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Introduction

Introduction

I This talk is more about practice than theory. The purpose is simply
to convince one that backtrack searches in permutation groups can be
helped by parallel processing (this is not at all obvious). Mine may
not be the best approach, but it is a start.

I Several references for theory are in upcoming slides.

I For partition backtrack (although in different notation), see:

Leon, Jeffrey S., “Partitions, refinements, and permutation group
computation,” Dimacs Series in Discrete Mathematics and
Theoretical Computer Science, vol 28 (1997), 123-158.

I For the code, examples and explanations (coming):

http://math.jasonbhill.com/backtrack
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Introduction

Introduction

I Since January between math, applied math and CS departments at
Colorado: 8 seminar talks containing “GPU” in the title.

I One number theory student told me: “I don’t use the open-source
options because Mathematica can use multiple cores and my GPU.”

I My reply: “A single horse may pull a cart perfectly well. Sometimes,
not always, two horses can do a better job. It is rare (but perhaps
possible) that using 2,000 chickens could improve that situation.”

I During an algebra seminar on non-polynomial time permutation group
algorithms, someone asked me why backtrack searches in groups are
not performed in parallel.
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Partition Backtrack

The Very Basics of Backtrack

I The term “backtrack” was coined by D.H. Lehmer in the 1950s.

I Main Idea: Traverse a search tree recursively from the root down
using a “depth first search” for leaves at the bottom of the tree that
may satisfy some property. Never search below a node if it becomes
evident that no leaf below that node will satisfy the property.
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Partition Backtrack

Backtrack in Permutation Groups

I We use backtrack searches for many problems where no polynomial
runtime algorithm is known to exist. (e.g., normalizers, centralizers,
subset stabilizers).

I The basic approach builds on the work of Sims (1971). See:
I Alexander Hulpke’s online CGT notes
I Permutation Group Algorithms by Ákos Seress
I Handbook of CGT by Holt, Eick, and O’Brien

I In 1981, B. McKay used “partition backtrack” in his program Nauty
for testing graph isomorphisms.

I In 1991 and 1997, J. Leon published papers detailing partition
backtrack in permutation groups. He wrote an implementation in C
between those papers.

I GAP and Magma use partition backtrack.
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Partition Backtrack

Partition Backtrack

Definitions and Notation

Definition A partition λ of n ∈ Z is a set composition of disjoint
non-empty subsets of {1, 2, . . . , n}. Then λi denotes the ith
subset of λ.

Example For n = 7, one example is λ = [{5}, {1, 3, 4}, {2, 7}, {6}].
We will view partitions as tableau-like diagrams:

λ =
1 3 4

2 7

6

5

= 3 1 4

2 7

6

5

.

Here, |λ1| = |λ4| = 1, |λ2| = 3 and |λ3| = 2.

Definition The height h(λ) of a partition λ is the number of non-empty
rows. In the example above, h(λ) = 4.

http://math.jasonbhill.com
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Partition Backtrack

Definitions and Notation

Definition Given two partitions λ and µ of n, µ is a refinement of λ,
written µ ≤ λ, if for 1 ≤ i ≤ h(λ) we have µi ⊆ λi .

Example

3

2 7

6

5

1 4

≤ 3 1 4

2 7

6

5

.

Definition A partition stack λ is a sequence of partitions λ of n
satisfying the property that the kth partition is a refinement
of the (k − 1)th partition.

Definition A complete partition stack λ is a stack with the property
that the kth partition λ satisfies h(λ) = k .
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Partition Backtrack

Example of a complete partition stack (Refinements proceed
downwardly.)

1 2 3 4

1 2
3 4

1 2
4
3

2
4
3
1

Note that recording this complete partition stack may be done efficiently
by recording only the row added at each refinement: [{3, 4}, {3}, {1}]
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Partition Backtrack

Main Idea: (very briefly – skipping massive details)

I Let G be a group acting on domain Ω = {1, . . . , n} with base B. We
wish to find elements of G satisfying some property P.

I Start with a partition λ of n having height 1.

I Refine λ in a complete partition stack, exploiting the property P as
much as possible to perform the refinements.

I When P provides no refinement, refine rows of λ containing a base
element by mapping that base element to other integers in that row.

http://math.jasonbhill.com



Partition Backtrack

Partition Backtrack

I For example, if no refinement from P is known and we are currently
considering λ = [{1, 2}, {3, 4}] with 4 a base point, then we have
either 4 7→ 4 or 4 7→ 3.

1 2

3 4

1 2

3

4

1 2

4

3

I We backtrack using the possible base images, never constructing
refinements below a given partition if we determine that no group
element satisfying P can exist below that node.
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Partition Backtrack

I Leon’s C code for partition backtrack can be found in the GAP
package GUAVA. It can perform partition backtrack efficiently (should
you know how to use it) on (among other problems):

I set stabilizers
I partition stabilizers
I element and subgroup centralizers
I isomorphisms and automorphism groups of designs
I isomorphisms and automorphisms of linear codes
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Partition Backtrack

I David Joyner convinced Leon to GPL his code in 2007. Robert Miller
and Tom Boothby revised the code.

I Robert Miller is currently working on a Cython implementation for
Sage.

I I’ve used Leon’s code as a launchpad, modernizing the C and adding
MPI (and hopefully OpenMP soon) routines.
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Introduction to Parallelism

Introduction to Parallelism

I 10 years ago, if you wanted to run a program faster, one option was
to simply wait a year or two. Faster processors would be available.

I In 1965, Intel co-founder G.E. Moore published an article in
Electronics Magazine noting that circuits were consistently doubling
in complexity roughly ever 2 years. He predicted this trend would
continue for at least 10 years.

I His prediction was very accurate until around 2004.

I After 2004, the clock speed of commercially available CPUs actually
decreased. 4 GHz CPUs are simply too expensive to cool.

I This isn’t a “I’ll wait another year or two and it will be fixed” sort of
problem. It’s the laws of physics. CPUs will not get faster.
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Introduction to Parallelism

Introduction to Parallelism
I At the same time, multi-core systems have become the norm.

Ironically, the number of flops (floating point operations per second)
computers are capable of is still increasing at the same rate as before.
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Introduction to Parallelism

There are big problems:

I Most algorithms are only partially parallelizable.

I Amdahl’s Law provides bounds for the speed-up of partially
parallelizable algorithms. The results are, usually, not great.

I Communication between processors/cores is drastically more
expensive than computation is, and varies by hardware.

I Communications can create deadlock situations.

I Splitting fast-running algorithms (even complex and parallelizable
ones!!) across many cores may result in a communication cost that
causes the program to run slower than it runs in serial (single-core).

I Memory management is much more challenging.

I The whole area suffers from lack of standardization: OpenMP,
OpenMPI, MPICH, LAM/MPI, pyMPI, CUDA, OpenMPC, etc.
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An Implementation

Goal: Write a parallel partition backtrack program that...

I ... gets correct results (obvious requirement).

I ... can actually be used (i.e., called from GAP or terminal).

I ... uses knowledge of communications -vs- computation costs specific
to the host machine at runtime to determine how to parallelize.

I ... does not slow down relative to the serial version.

This is a work in progress, but it does actually work.

I Uses Leon’s code as a starting point.

I Currently implemented for centralizers and set stabilizers.

I Currently input/output is in the terminal with files (very inefficient).
Plan to add process/stream capabilities from GAP.
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An Implementation

Test Platforms: Commodity Computers

I The code (when completed) should be callable from GAP.

I At present, the code works on these machines through terminal
commands and using files for input and output.

Machine CPU cores RAM Gflops

Dirichlet 1x U3500 @ 1.4 GHz 1 4 GB 3

Descartes 1x E5200 @ 2.5 GHz 2 4 GB 13

Tarski 1x Q9400 @ 2.6 GHz 4 8 GB 38

Euclid 2x Xeon E5440 @ 2.8 GHz 8 24 GB 49

Sage 2x Opteron 6128 @ 2.0 GHz 16 24 GB 63
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An Implementation

An Implementation

Test Platforms: Supercomputers

I The code is callable from a scheduler process on these machines.

NSF TeraGrid (Boulder, Pittsburgh, San Diego)
Machine CPU cores RAM Gflops

Frost 4096x PPC-440 @ 700 MHz 8192 2 TB 22936

Blacklight 512x Xeon X7560 @ 2.3 GHz 4096 32 TB 36864

Trestles 1296x Opteron 6136 @ 2.4 GHz 10368 21 TB 100000

NCAR/University of Colorado
Machine CPU cores RAM Gflops

Janus 2736x Xeon X5660 @ 2.8 GHz 16416 32 TB 184000
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An Implementation
Janus Currently 44 on Top500 list

I Power Supply: 2 MW (≈ $1, 900 USD per day)

I Network: Fully non-blocking 40 Gbps QDR Infiniband

I Cooling: 81,000 gallons chilled water
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Testing Communications: Asynchronous Ping Pong

I We test network latency and throughput between cores in various
configurations across the network. (They play ping pong.)

I This tells us how quickly we will be able to communicate generators
for groups of varying degrees between cores.

Ts (µs) α (cycles) throughput (MiB/s) Tc (s/byte) β (cycles/byte)

Frost (Single Node) 2.39 1675.80 1661.88 5.74 × 10−10 4.02 × 10−1

Frost (Cross Node) 2.55 1785.82 144.82 6.59 × 10−9 4.61

Frost (Cross Partition) 2.84 1989.34 144.88 6.58 × 10−9 4.61

Trestles (Single Node) 1.16 2775.62 968.55 9.85 × 10−10 2.36

Trestles (Cross Node) 1.87 4491.48 2247.15 4.24 × 10−10 1.02

Table 1: Single Byte Latency and Bandwidth by Machine and Communication Type
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Testing Communications: Asynchronous Ping Pong
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Frost: Cross Node Communication Time for a Single Generator of Degree n
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An Implementation

How to Proceed

Problem 1

I In general, we find that inter-processor communications are very
expensive compared to intra-processor communications.

I The implication is that splitting a large backtrack search across
thousands of cores on a supercomputer may take longer than splitting
the same search on cores in a single processor.

Problem 2

I Even if we do know how many cores to use, and which cores to assign
specific tasks, we are still largely clueless as to how we should go
about dividing the backtrack search itself.

The approach to solving these problems will vary by system
architecture. It is best to consider an example.
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An Example

Let G = 〈a, b〉 be the Fischer group Fi24
′ of degree 306,936. This is the

third largest sporadic group (behind M and B).

I |a| = 2

I |b| = 3

I |G | = 221 · 316 · 52 · 73 · 11 · 13 · 17 · 23 · 29

= 1,255,205,709,190,661,721,292,800

I g = ababbabbabb has order 6.
I We will find CG (g) on different platforms.

I |CG (g)| = 559, 872
I We will find 9 strong generators and a base of size 3.
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Single Core

I On a single core machine, we do not have to worry about Problem 1
as there are no other cores to send messages to.

I We also don’t need to worry about how we split the backtrack search.

I This is really just a slight modification of Leon’s existing code.

./parcent 1 f24g1 fisch6 Cfisch6

BSGS construction time: +69.289662

SGS augmentation time: +122.772923

backtrack search time: +25.211318
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Dual Core

I Problem 1: We are able to stay within a single processor and
communicate efficiently.

I Problem 2: We simply have the cores take every other node at some
appropriate splitting level.

./parcent 2 f24g1 fisch6 Cfisch6

Attempting to use 2 cores

Using 1 parallel strategy on 2 cores

backtrack search time: +14.269752
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3-Core

I When we move to a 3-core calculation, we have some options.

I We may force a serial strategy:

./parcent 3 -fs f24g1 fisch6 Cfisch6

Attempting to use 3 cores

Using 1 serial strategy on 1 core

Using 1 parallel strategy on 2 cores

Parallel strategy on 2 cores wins!

backtrack search time: +14.336500

I Or we may allow a 3-core parallel strategy:

./parcent 3 f24g1 fisch6 Cfisch6

Attempting to use 3 cores

Using 1 parallel strategy on 3 cores

backtrack search time: +9.969995
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8-Core on 2 CPUs

I For larger core counts spread across multiple CPUs, we limit
communication between processors.

I We try a serial and a parallel strategy of the largest size possible.

I We assign the remaining cores on a single CPU with a randomized
node strategy: A core considers orbits at splitting levels and assigns
each orbit point randomly across the available cores.

./parcent 8 -fs f24g1 fisch6 Cfisch6

Attempting to use 8 cores

Using 1 serial strategy on 1 core

Using 1 parallel strategy on 4 cores

Using 1 random parallel strategy on 3 cores

Random parallel strategy on 3 cores wins!

backtrack search time: +5.709973
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Massively Parallel Example

I We run on Janus with multiple random strategies across 4800 cores
on 800 CPUs.

I Some strategies skim the top of the tree randomly.

I Others dive further into the tree before assigning a random splitting.

qsub parcent fisch.pbs

Random parallel strategy on 12 cores wins!

backtrack search time: +1.714144
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This workshop hereby returns an exit status (modulo questions):

0
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